If it's not what You are looking for type in the equation solver your own equation and let us solve it.
53t^2-72t+24=0
a = 53; b = -72; c = +24;
Δ = b2-4ac
Δ = -722-4·53·24
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-4\sqrt{6}}{2*53}=\frac{72-4\sqrt{6}}{106} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+4\sqrt{6}}{2*53}=\frac{72+4\sqrt{6}}{106} $
| 4-6y+4=2y+14-6y | | x-2/6=3/6 | | 2(5x−9)=30−2(x+3) | | 3y-23-6y=4y-1-18y | | 2x+42-6x=2-8x+4 | | -15+2x=9+4x | | 3.8m-13=1.4m+5 | | -74+10x=5x+56 | | 2y+6=3y+33-4y | | -5p-6=7p+14 | | d=(1/0.7) | | 35h=525 | | x/8+3=-2 | | 9x+8−3x=−5x−17+x | | 6+y×3-5y=15 | | 4x-3/3+2x-1/3=4x | | 14=34-x | | 2+|7r+7|=2 | | 4+y=9.4 | | (2x+1)(x-2)(3x-4)=0 | | 6×(y+3)-5y=15 | | 6•(y+3)-5y=15 | | 5(6-c)/2=-4(2c+7)/7 | | √2x+6+4=x+3 | | 11x-8x+7x=90 | | .2(h-15)+12h-8=0 | | t/4+4=t/8-1 | | 1/5h(h-15)+12h-8=0 | | 6(8-3n)+5=197 | | 8x+19x=30 | | 7w-16w=-81 | | -5v+6v=-7+2v |